Matematika Sekolah Menengah Atas maka f-¹ (x)?
pake cara ya​

maka f-¹ (x)?
pake cara ya​

Fungsi Invers~

Jika [tex]\sf{f\left(x\right)=2\left(x+3\right)^{2}-5}[/tex]

Maka

[tex]\large\boxed{\sf{f^{-1}\left(x\right)=\sqrt{\frac{x+5}{2}}-3}}[/tex]

[tex] \: [/tex]

Fungsi Komposisi dan Fungsi Invers

Pendahuluan

A.  Definisi Fungsi

Fungsi dari himpunan A ke Himpunan B => relasi yang memetakan setiap anggota A dengan tetap satu anggota B.

[tex] \: [/tex]

[tex] \boxed{\boxed{\mathbf{B.\ \ Operasi\ Aljabar}}}[/tex]

[tex] \scriptsize\boxed{\begin{array}{c}\mathbf{1.\ Penjumlahan\ dan\ Pengurangan\ Fungsi}\\\mathbf{\left(f\pm g\right)\left(x\right)=f\left(x\right)\pm g\left(x\right)}\\\\\mathbf{2.\ Perkalian\ Fungsi}\\\mathbf{\left(f\ .\ g\right)\left(x\right)=f\left(x\right)g\left(x\right)}\\\\\mathbf{3.\ Pembagian\ Fungsi}\\\mathbf{\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}}\\\\\mathbf{4.\ Perpangkatan}\\\mathbf{\left(f\left(x\right)\right)^{n}=f^{n}\left(x\right)}\end{array}}[/tex]

[tex] \: [/tex]

[tex] \boxed{\boxed{\mathbf{C.\ \ Fungsi\ Komposisi}}}[/tex]

[tex] \scriptsize\mathbf{1.\ Fungsi\ komposisi\ dapat\ ditulis\ sebagai\ :}\\\\\mathbf{\left(f \circ g\right)\left(x\right)=f\left(g\left(x\right)\right)\to komposisi\ g}\\\mathbf{\left(g \circ f\right)\left(x\right)=g\left(f\left(x\right)\right)\to komposisi\ f}[/tex]

[tex] \boxed{\underbrace{\mathbf{x\to_{g}\ g\left(x\right)\to_{f}\ f\left(g\left(x\right)\right)}}_{\mathbf{\left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right)}}} [/tex]

[tex] \: [/tex]

[tex] \scriptsize\mathbf{2.\ Sifat\ fungsi\ komposisi,\ antara\ lain\ :}\\\\\mathbf{a.\ Tidak\ komutatif,\ \left(f \circ g\right)\left(x\right)\ne\left(g \circ f\right)\left(x\right).}\\\mathbf{b.\ Asosiatif,\ \left(f \circ \left(g \circ h\right)\right)\left(x\right)=\left(\left(f \circ g\right) \circ h\right)\left(x\right).}\\\mathbf{c.\ Terdapat\ unsur\ identitas\ \left(I\right)\ \left(x\right),\ }\\\mathbf{\left(f \circ I\right)\left(x\right)=\left(I \circ f\right)\left(x\right)=f\left(x\right).} [/tex]

[tex] \: [/tex]

[tex]\boxed{\boxed{\mathbf{D. \ \ Fungsi \ Invers}}}[/tex]

[tex]\small\mathbf{1.) \ f^{-1} (x) \to invers\ dari\ fungsi\ f\left(x\right).} [/tex]

[tex]\boxed{\mathbf{\boxed{\mathbf{f^{-1}\left(y\right)=x}}\ _{f^{-1}} \rightleftharpoons ^{f} \ \boxed{\mathbf{y=f\left(x\right)}}}} [/tex]

[tex] \: [/tex]

[tex]\scriptsize\mathbf{2.) \ Invers\ dapat\ ditentukan\ dengan\ mengubah\ bentuk}[/tex]

[tex]\scriptsize\mathbf{f\left(x\right)=y=...} \ \scriptsize\mathbf{menjadi} \ \scriptsize\mathbf{f^{-1}\left(y\right)=x=...}[/tex]

[tex] \: [/tex]

[tex]\mathbf{3.)\ Sifat\ fungsi \ invers \ :} [/tex]

[tex]\mathbf{a.\ \left(f \circ f^{-1}\right)\left(x\right)=\left(f^{-1} \circ f\right)\left(x\right)=I\left(x\right)} [/tex]

[tex]\mathbf{b.\ \left(f \circ g\right)^{-1}\left(x\right)=\left(g^{-1} \circ f^{-1}\right)\left(x\right)} [/tex]

[tex]\mathbf{c.\ \left(f \circ g\right)\left(x\right)=h\left(x\right)\to f\left(x\right)=\left(h \circ g^{-1}\right)\left(x\right)} [/tex]

[tex] \: [/tex]

[tex]\mathbf{4.\ Rumus \ Cepat  :} [/tex]

[tex]\small\boxed{\mathbf{f\left(x\right)=\frac{ax+b}{cx+d}\to f^{-1}\left(x\right)=\frac{-dx+b}{cx-a}}}[/tex]

[tex] \: [/tex]

[tex] \: [/tex]

Pembahasan

Diketahui :

[tex]\sf{f\left(x\right)=2\left(x+3\right)^{2}-5}[/tex]

Ditanya :

[tex]\sf{f^{-1}\left(x\right)=...}[/tex]

Jawaban :

[tex]\sf{f\left(x\right)=2\left(x+3\right)^{2}-5}[/tex]

misalkan

[tex]\large\sf{y=2\left(x+3\right)^{2}-5}[/tex]

[tex]\large\sf{y+5=2\left(x+3\right)^{2}}[/tex]

[tex]\large\sf{\frac{y+5}{2}=\left(x+3\right)^{2}}[/tex]

[tex]\to \ \bf{\ akarkan \ kedua \ ruas}[/tex]

[tex]\large\sf{\sqrt{\left(\frac{y+5}{2}\right)}=\sqrt{\left(x+3\right)^{2}}}[/tex]

[tex]\large\sf{\sqrt{\frac{y+5}{2}}=x+3}[/tex]

[tex]\large\sf{\sqrt{\frac{y+5}{2}}-3=x}[/tex]

[tex]\large\sf{x=\sqrt{\frac{y+5}{2}}-3}[/tex]

maka

[tex]\large\boxed{\sf{f^{-1}\left(x\right)=\sqrt{\frac{x+5}{2}}-3}}[/tex]

[tex] \: [/tex]

[tex] \: [/tex]

Pelajari Lebih Lanjut :

  • Contoh soal invers_Diketahui f(x) = x² dan g(x) = 4x -1. Jika h(x) = f(g(x) + 2) maka h^-1(x) adalah... : https://brainly.co.id/tugas/50517614
  • Contoh soal Fungsi invers dari f(x) = 3x + 1:  https://brainly.co.id/tugas/50517920
  • Contoh soal Fungsi komposisi dan Fungsi Invers : https://brainly.co.id/tugas/50509104
  • Contoh soal mencari fungsi komposisi -> (g o f) (x) : https://brainly.co.id/tugas/49941623

[tex] \: [/tex]

[tex] \: [/tex]

Detail Jawaban

Kelas : 11 SMA

Bab : 2

Sub Bab : Bab 6 - Fungsi

Kode Kategorisasi : 11.2.6

Kata Kunci : Fungsi Komposisi dan Fungsi invers.

[answer.2.content]